提出了用于基于合奏的估计和模拟高维动力系统(例如海洋或大气流)的方法学框架。为此,动态系统嵌入了一个由动力学驱动的内核功能的繁殖核Hilbert空间的家族中。这个家庭因其吸引人的财产而被昵称为仙境。在梦游仙境中,Koopman和Perron-Frobenius操作员是统一且均匀的。该属性保证它们可以在一系列可对角线的无限发电机中表达。访问Lyapunov指数和切线线性动力学的精确集合表达式也可以直接可用。仙境使我们能够根据轨迹样本的恒定时间线性组合来设计出惊人的简单集合数据同化方法。通过几个基本定理的完全合理的叠加原则,使这种令人尴尬的简单策略成为可能。
translated by 谷歌翻译
基于深度学习的模型,例如经常性神经网络(RNNS),已经应用于各种序列学习任务,取得了巨大的成功。在此之后,这些模型越来越多地替换对象跟踪应用程序的经典方法,用于运动预测。一方面,这些模型可以通过所需的更少建模捕获复杂的对象动态,但另一方面,它们取决于参数调谐的大量训练数据。为此,我们介绍了一种用于在图像空间中产生无人机(UAV)的合成轨迹数据的方法。由于无人机,或者相反的四轮压力机是动态系统,它们不能遵循任意轨迹。通过UAV轨迹实现对应于高阶运动的最小变化的平滑度标准的先决条件,可以利用规划侵略性的四轮机会飞行的方法来通过一系列3D航点产生最佳轨迹。通过将这些机动轨迹投影,该轨迹适合于控制二次调节器,实现图像空间,实现了多功能轨迹数据集。为了证明合成轨迹数据的适用性,我们表明,基于RNN的预测模型,在生成的数据上训练,可以在真实的UAV跟踪数据集上优于经典的参考模型。评估是在公开的反UAV数据集完成的。
translated by 谷歌翻译
在诸如对象跟踪的应用中,时间序列数据不可避免地携带缺失的观察。在基于深度学习的模型的成功之后,对于各种序列学习任务,这些模型越来越替换对象跟踪应用中的经典方法,以推断对象的运动状态。虽然传统的跟踪方法可以处理缺失的观察,但默认情况下,大多数深度同行都不适合这一点。迄今为止,本文介绍了一种基于变压器的方法,用于在可变输入长度轨迹数据中处理缺失的观察。通过连续增加所需推理任务的复杂性,间接地形成模型。从再现无噪声轨迹开始,该模型然后学会从嘈杂的输入中推断出来的轨迹。通过提供缺失的令牌,二进制编码的缺失事件,该模型将学习进入缺少数据,并且Infers在其余输入上调整完整的轨迹。在连续缺失事件序列的情况下,该模型则用作纯预测模型。该方法的能力在反映原型对象跟踪方案的综合数据和实际数据上进行了证明。
translated by 谷歌翻译
在诸如跟踪之类的任务中,时间序列数据不可避免地携带缺失的观察。虽然传统的跟踪方法可以处理缺失的观测,但经常性的神经网络(RNNS)旨在在每一步中接收输入数据。此外,RNN的当前解决方案,例如省略缺失的数据或数据归档,不足以解释所产生的不确定性。迄今为止,本文介绍了一种基于RNN的方法,其提供了用于运动状态估计的完整时间过滤周期。卡尔曼滤波器启发方法,可以处理缺少的观察和异常值。为了提供完整的时间过滤周期,扩展了基本RNN以考虑其精度以考虑更新当前状态而采取观察和相关的信念。生成参数化分布以捕获预测状态的RNN预测模型与RNN更新模型组合,这依赖于预测模型输出和当前观察。通过提供具有屏蔽信息的模型,二进制编码的缺失事件,模型可以克服标准技术的限制来处理缺失的输入值。模型能力在反映了原型行人跟踪方案的合成数据上证明了模型能力。
translated by 谷歌翻译